Finding Optimal Neural Network Architecture
Using Genetic Algorithms

Fiszelew A., Britos P., Ochoa A., Merlino H.,
Fernéndez E. and Garcia-Martinez R.

Software & Knowledge Engincering Center. Buenos Aires Institute of Technology.
Intelligent Systems Laboratory. School of Engineering. University of Buenos Aires.

rgm@itba.edu.ar

Abstract. This work deals with methods for finding optimal neural network
architectures to learn particular problems. A genetic algorithm is used to
discover .suitable domain specific architectures; this evolutionary algorithm
applies direct codification and uses the error from the trained network as a
pcrformqnce measure to guide the evolution. The network training is
accompllshcd by the back-propagation algorithm; techniques such as training
repetition, carly stopping and complex regulation are employed to improve the
cvolutionary process results. The evaluation criteria are based on learning skills
and classification accuracy of generated architectures

1 Introduction

The artificial neural networks offer an attractive paradigm for the design and the
analysis of adaptive intelligent systems for a wide range of applications in artificial
intelligence [1, 2]. Despite the great activity and investigation in this area during last
years, that led to the discovery of relevant theoretical and empirical results, the design
of neural networks for specific applications under certain designing constrains (for
instance, technology) is still a test and error process, depending mainly on previous
experience in similar applications [3]. The performance (and cost) of a neural network
for particular problems is critically dependant on, among others, the choice of the
processing elements (neurons), the net architecture and the learning algorithm [4, 5, 6,
7, 8, 9]. This work is focused in the development of methods for the evolutionary
design of architectures for artificial neural networks. Neural networks are usually seen
as a method to implement complex non-linear mappings (functions) using simple
elementary units interrelated through connections with adaptive weights [10, 11]. We
focus in optimizing the structure of connectivity for these networks.

©S. Torres, I. Lépez, H. Calvo. (Eds.) Received 08/02/07
Advances in Computer Science and Engineering Accepted 08/04/07

Research in Computing Science 27, 2007, pp. 15-24 Final version 20/04/07

16 Fiszelew A., et al.

2 Evolutionary Design of Neural Architectures

The key process in the evolutionary approach for topology designing is depicted in
figure 1. In the most general case, a genotype can be thought as an array of genes,
where every gene takes a value from a properly defined domain [12]. Each genotype
codes a phenotype or candidate solution for the domain of interest — in our case a
neural architecture class. Such codifications could use genes that take numeric values
to represent a few parameters or complex structures of symbols that become into
phenotypes (in this case neural networks) by means of a proper decodification
process. This process can be extremely simple or quite complex. The resulting neur?l
networks (the phenotypes) can also be equipped with learning algorithms that train
them using stimulus from the environment or simply be evaluated in a given ta}sk
(assuming that the weights of the net are also settled by the coding / dccodl{lg
mechanism). This evaluation of a phenotype determines the fitness of 'ltS
corresponding genotype [13, 14]. The evolutionary procedure works in a population
of such genotypes, preferably sclecting genotypes that code phenotypes with a high
fitness, and reproducing them. Genetic operators such as mutation, crossover, etc., are
used to introduce variety into the population and to test variants of candidate solutions
represented in the current population. In this way, over several generations, the
population gradually will evolve toward genotypes that correspond to phenotypes
with high fitness. In this work, the genotype only codes the architecture of a nC}Jral
network with forward connections. The training of the weights for those connections
is carried out by the back-propagation algorithm.

3 The Generalization Problem

The topology of a network, that is, the number of nodes and the location and the
number of connections among them, has a significant impact in the performance of
the network and its generalization skills. The connections density in a neural network
determines its ability to store information. If a network doesn't have enough
connections among nodes, the training algorithm may never converge; the "e‘{ral
network will not be able to approximate the function. On the other hand, overfitting
can happen in a densely connected network. Overfitting is a problem of statistical
models where too many parameters are presented. This is a bad situation because
instead of learning how to approximate the function presented in the data, the network
could simply memorize every training example. The noise in the training data is then
memorized as part of the function, often destroying the skills of the network to
generalize. Having good generalization as a goal, it is very difficult to realize the best
moment to stop the training if we are looking only at the training learning curve. In
particular, like we mention previously, it is possible that the network ends up
overfitting the training data if the training session is not stopped at the right time. We
can identify the beginning of overfitting by using crossed validation: the training
examples are split into an training subset and a validation subset. The training subset
is used to train the network in the usual way, except for a little modification: the
training session is periodically stopped (every a certain number of epochs), and the

Finding Optimal Neural Network Architecture Using Genetic Algorithms 17

network is evaluated with the validation set after cach training period. The figure 2
shows the conceptualized forms of two learning curves, one belonging to measures
over the training subset and the other over the validation subset. Usually, the model
doesn't work so well on the validation subset as it docs on the training subset, the
design of which the model was based on. The estimation learning curve decreases
monotonously to a minimum for a growing number of epochs in the usual way. In
contrast, the validation learning curve decreases to a minimum, then it begins to
increase while the training continues. When we look at the estimation learning curve
it seems that we could improve if we go beyond the minimum point on the validation
learning curve. In fact, what the network is learning beyond that point is essentially
noise contained in the training set. The carly stopping heuristic suggests that the

minimum point on the validation learning curve should be used as an approach to stop
the training session.

Decoding
Trained ANN Mean
S Square
of .'s Error Validation
‘|‘ curve
]
:
'
‘l“ '," Earlystopping Estimation curve
ovger?’ point
Selection &
Mutation it ANN Trammg b Number of training repetitions
e Filness Evaluation
Recombination

Fig. 2. Representation of the early
stopping heuristic based on crossed
validation.

Fig. 1. Design process of evolutionary neural
architectures

The question that arises here is how many times we should let the training subset
not improve over the validation subset, before stopping the training session. We
define an early-stopping parameter B to represent this number of training epochs.

4 The Permutation Problem

A problem that evolutionary neural networks face is the permutation problem. It not
only makes evolution less efficient, but also hinders to the recombination operators
the production of children with high fitness. The reason is the many-to-one mapping
from the coded representation of a neural network to the real neural network decoded,

18 Fiszelew A., et al.

because two networks that order their hidden nodes in different ways have different
representation but can be functionally equivalent, as shown in the figures 3 and 4.

(a) Node 1 Node 2 (a) Node 2 Node 1

(b) 0100 1010 0010 0000 0111 0011 (b) 0010 0000 0100 1010 0011 0111

Fig. 3. (a) A neural network with its Fig. 4. (a) A neural network that is
connection weights; (b) A binary cquivalent to the one in figure 3(a); (b)
representation of the weights, assuming that The representation of the genotype
cach weight is represented with 4 bits. Zero under the same scheme of
jeans no connection. representation.

To attenuate the effects of the permutation problem, we implement a phenotype
crossover, that is, a crossover that works on neural networks rather than on chains of
genes that make up the population. Another operator that helps in the face of the
permutation problem is mutation. This operator induces to explore the whole searc.h
space and allows maintaining a genetic diversity in the population, so that the genetic
algorithm is able to find solutions among all the possible permutations of the network.

5 The Noisy Fitness Evaluation Problem

The evaluation of the fitness of the architectures of neural networks will always be
noisy if the evolution of the architectures is separated from the training of the weights.
The cvaluation is noisy because what is used to evaluate the fitness of the phenotype
is the real architecture with weights (that is, the phenotype created from the genotype)
and the mapping between phenotype and genotype is not one-to-one. Such a noise
can deceive to evolution, because the fact that the fitness of a phenotype generated
from genotype G1 is higher than the fitness of a phenotype generated from genotype
G2 doesn't imply that G1 has truly better quality that G2. To reduce this noise, we
train cach architecture many times starting from different initial weights chosen
randomly. Then we take the best result to estimate the fitness of the phenotype. This
method increases the computation time for the fitness evaluation, so a compromise

must be achieved among the attenuation of the noise and the number of repetitions for
the training.

Finding Optimal Neural Network Architecture Using Genetic Algorithms 19
6 The Complexity-Regularization Problem

As the network design is statistical in nature, we nced an appropriate tradeoff between
rcliability of the t.raining data and goodness of the model. In the context of back-
propagation learning, we may realize this tradcoff by minimizing the total risk
expressed as:

R(W) = es(W) + A gc(w)

The first term, eg(W), is the standard performance measure, which depends on both
the network (model) and the input data. In back-propagation model learning it is
typically defined as a mean-square error whose extends over the output neurons of the
network and which is carried out for all the training examples on an epoch-by-epoch
basis. The second term, ec(w), is the complexity penalty, which depends on the
network (model) alone; its inclusion imposes on the solution prior knowledge that we
may have on the models being considered. We can think of A as a regularization
parameter, Which represent the relative importance of the complexity-penalty term
with respect to the performance-measure term. In the weight-decay procedure that we
used, the complexity penalty term is defined as the squared norm of the weight vector
w (i.e., all the free parameters) in the network, as shown by:

2

sc(w)=lwf" = Xow/

i€Cppar
where the set Coy refers to all the synaptic weights in the network. This procedure
operates by forcing some of the synaptic weights to take values close to zero, while
permitting others to retain their relatively large values. Accordingly, the weights of
the network are grouped roughly into two categories: those that have a large influence
on the network (model), and those that have little or no influence on it. The weights
on the latter category are referred to as excess weights. In the absence of complexity
regularization, these weights result in poor generalization by virtue of their high
likelihood of taking on completely arbitrary values or causing the network to overfit
the data in order to produce a slight reduction in the training error. The use of
complexity regularization encourages the excess weights to assume values close to
zero, and thereby improve generalization.

7 Experimental Design

The hybrid algorithm that we employ for the automatic generation of neural networks
uses a direct coding scheme, and develops the following steps:

1. Create an initial population of individuals (neural networks) with random
topologies. Train each individual using the back-propagation algorithm.
2. Select the mother and the father from the population.

20 Fiszelew A., et al.

Recombinate both parents to obtain two children.
Mutate each child randomly.

Train each child using the back-propagation algorithm.
Replace the children into the population.

Repcat from step 2 for a given number of generations.

S g e

7.1 Parameters Used in the Genetic Algorithm

This algorithm applies a tournament selection (ordinal based) and replacement
consists on a steady state update also implemented with a tournament technique. "I:he
tournament size is 3. A hundred of generations for the genetic algorithm are carr'led
out in every experiment. All the experiments use a population size of 20. This is 2
standard value used in genetic algorithms. We make here a compromise among
selective pressure and calculation time. The employment of 20 individuals is good to
accclerate the development of the experiments without affecting at the results.

7.2 Parameters Used in the Neural Network

Each neural network has 2 hidden layers and is trained over 500 epochs with back-
propagation. This value is higher than the one usually used to train neural networks,
giving enough time to the training to converge, and so taking advantage of the whqle
potential of each network. The back-propagation algorithm is based on the sequcnn?l
training mode; the activation function chosen for cach ncuron is the hypcrbollc
tangent. We use a number of back-propagation repetitions equal to 3 to train each
neural networks starting from different random initial weights. The best resul} is then
used to estimate the fitness of the network. This algorithm provides an
“approximation” to the trajectory in the weight space calculated by the descendant
gradient method. The correction Awji(n) applied to the weight that connects the
neuron i to the neuron j is defined by the delta rule:

weight learning local

input signal
conection |= rate | gradiemt || ofneuronj
Aw, () n 8, () ».ln)

A simple way to increment the learning rate and at the same time avoid the risk of

instability (oscillations in the net) is to modify the delta rule including a momentum
term, lie shown in:

iji(") =ahAw, (n i 1)+ 775/("))’1 (n)

where o is usually a positive number called the momentum constant. In the
experimentation, the learning rate 1 is 0.1 and the momentum constant is 0.5.

Finding Optimal Neural Network Architecture Using Genetic Algorithms 21

7.3 The Database Used

The database chosen for the cxperimentation was taken form a file of datasets in
Internet [15]. It consists on data concerning 600 applications for credit cards. Each
application represents a sample for the training. The information of the application
comprises the input for the neural network during the learning phase. The output is a
truc/false value that specifies whether the application was accepted or rejected. All the
data in the applications is changed into meaningless symbols to protect the
confidentiality. The attributes of a sample are similar to:

b,30.83,0,u,g,w,v,1.25,4,t,01,f,,00202,0,+

In order to present the data to the network, the maximum and minimum values for
every attribute into the training set are determined, then they are scaled between -1
and +1. The non-numerical inputs (multiple-choice) are treated in the same way,
using discrete intervals.Using these methods of transformation, we obtain a 47 inputs
network. The + sign at the end of the example stands for the class of the sample. In
this case it will be a + or a -, depending on the approbation of the application,
therefore the network has two outputs, one that activates when it is approved and the
other when is rejected.

7.4 Cross Validation

The cross validation is employed in the experimentation with the intention of getting
better results. The cross validation consists on swapping the training set and the
validation set, in the way that cach one is used for the opposite purpose. This method
assures that any tendency found in the results is, in fact, just tendency, and not
causality. Thus, the database is randomly partitioned into two sets of equal size that
are in turns used as training and validation subsets.

7.5 Some Results from Experimentation

[] | — e sl Ky

650

em

8150
T 810
£ 05 ¥
» 000 :

7950

no—

7850 +—

| 780 T
¢ 2=000 A:005 A=010 =015
"R ox e ® ® "ok ® owm owm owm om e w
e o g o

Fig. 5. Complexity-regularization with adjustable Fig. 6. Comparison of the hit percentage of
regularization parameter: (1) A=0 (no neural networks generated with different
regularization); (2) A=0.05; (3) A=0.01; (4) regularization parameters A.
A=0.15

22 Fiszelew A., et al.

ek, [r7 J—
ey e«
20
em
g B1D - r
000 +—{ i
noi—
7w i—{
770
7600 <

[T} p=2 p=5 p=10

Fig. 7. Early-stopping with adjustable stopping
parameter: (1) No early stopping; (2) B=2; (3)
p=5; (4) B=10.

Fig. 8. Comparison of hit percentage of ncur'al
networks generated with different early-stopping
parameters B.

7.6 Comparison of a Resulting Neural Network with Other Networks

To determine if the evolutionary process is actually improving or not the neu.ral
networks concerning with their domain-specific topologies, we compare a resulting
net generated by the hybrid algorithm with the best random topology (the one
generated in the first generation of the genetic algorithm). These nets are also
compared with a topology similar to the one obtained by the hybrid algorithm but
100% connccted (or fully connected). We observe the effects of the three different
topologies on the convergence of the neural networks while they are }ramgd th}_l a
data partition, as depicted in the figure 9. Then we evaluate their classification skills
on another data partition, as shown in the figure 10.

R - %00
b o 8400
: ar
80,00 -
7800
7600 1
7400 4
7200
S 7000 -
\.w

o e
Lot 2 Y

i dom
Hytrid 100% connected Best ran
algorthm topology topoloy

" » ®» @ m ® % m »n
N of Voming oo

Fig. 9. Ability to learning new data using: (1)
Hybrid algorithm topology; (2) Best random
topology: (3) Hybrid algorithm topology but 100%
connected.

Fig. 10. Comparison of hit percentage for
different topology and connectivity.

Finding Optimal Neural Network Architecture Using Genetic Algorithms 23

From figure 9 we see that the neural network generated by the hybrid algorithm is

able to lcarr.x better a new set of data than the other nets, including the one that
implements its same topology but is fully connected. The network generated by the

hybrid algorithm also has the best percentage for classifying examples not seen
pl.cviously, as it is illustrated in figure 10,

8 Conclusions

The real world often has problems that cannot be solved succe
technique; cach technique has its pros and its cons. The conc
artificial intelligence consists on combining two approaches, in a way that their
weaknesses are compensated and their strengths are boosted. The aim of this work is
to create a way of generating topologics of neural networks that can easily lcarn and
classify a certain class of data. To achicve this, a genetic algorithm is used to find the
best topology that fulfills this task. When the process finishes, the result is a
population of domain-specific networks, ready to take new data not seen previously.
The analysis of the results of the experiments demonstrates that this implementation is
able to create neural networks topologies that in general work better than random or
fully connected topologies when they learn and classify new domain-specific data.
An aspect that should be examined more deeply is how the cost of a topology should
be determined. In the current implementation, the cost is simply the training error of
the neural network on a partition of the data set. The question that arises here is if this
is the best way to determine the fitness of a topology. Another step to take would be
to repeat the experiments for different data sets. Scalability is an important problem in
neural networks implementations, therefore it would be interesting to seec how the
current implementation scales to bigger networks that contain thousands of inputs. A
last issue that should be explored is parallelization of the genetic algorithm, especially
considering the huge processing times involved during the experimentation. By
parallelizing the algorithm, it is possible to increment the population's size, reduce the
computational cost and so to improve the performance of the AG. The parallel genetic
algorithms or PGAs constitute a recent area of investigation, and very interesting

approaches exist such as the Coarse Grained (islands model) PGAs or the Fine Grain
PGAs [16].

ssfully by a single basic
cpt of hybrid system in

References

1. Hinton G. E. (1989) Connectionist Learning Procedures. Artificial Intelligence, vol. 40,
pp. 185-234

2. Hertz J,, A. Krogh and R. Palmer (1991) Introduction to the T heory of Neural
Computation. Reading, MA: Addison-Wesley.

3. Dow R. J. and Sietsma J. (1991) Creating Artificial Neural Networks that generalize.
Neural Networks, vol. 4, no. 1, pp. 198-209.

4. Haykin Simon (1999) Neural Networks. A Comprehensive Foundation. Second Edition.
Pretince Hall.

24

14.

15.

16.

Fiszelew A., et al.

Holland J. H. (1975) Adaptation in Natural and Artificial Systems. University of
Michigan Press (Ann Arbor).

Holland, J. H. (1980) Adaptive algorithms for discovering and using general patterns in
growing knowledge-based. International Journal of Policy Analysis and Information
Systems, 4(3), 245-268.

Holland, J. H. (1986) Escaping britileness: The possibilities of general purpose learning
algorithms applied in parallel rule-based systems. In R. S. Michaiski, J. G. Carbonell, &
T. M. Mitchell (Eds.), Machine Learning 11 (pp. 593-623). Los Altos, CA: Morgan
Kaufmann.

Holland, J. H., Holyoak, K. J., Nisbett, R. E., & Thagard, P. R. (1987). Classifier systems,
Q-morphisms, and induction. In L. Davis (Ed.), Genetic algorithms and simulated
annealing (pp. 116-128).

Honavar V. and L. Uhr. (1993) Generative Learning Structures and Processes Sor
Generalized Connectionist Networks. Information Sciences, 70:75--108.

Yao Xin (1999) Evolving Artificial Neural Networks. School of Computer Science. The
University of Birmingham. B15 2TT.

Yao X. and Liu Y. (1998) Toward Designing Artificial Neural Networks by Evolution.
Applied Mathematics and Computation, 91(1): 83-90.

Goldberg D. E. (1991) A4 comparative analysis of selection schemes used in genetic
algorithms. In Gregory Rawlins, editor. Foundations of Genetic Algorithms, pages 69-93,
San Mateo, CA: Morgan Kaufmann Publishers.

Rich E. and Knight K. (1991) Introduction to Artificial Networks. MacGraw-Hill
Publications.

Stone M. (1974) Cross-validatory choice and assessment of statistical predictions.
Journal of the Royal Statistical Society, vol. B36, pp. 111-133.

Blake C. L. y Merz C. J. (1998) UCI Repository of machine learning databases.
http://www.ics.uci.edu/~mlearn/MLRepository.html Irvine, CA: University of California,
Department of Information and Computer Science.

Hue Xavier (1997) Genetic Algorithms for Optimization. Edinburgh Parallel Computing
Centre. The University of Edinburgh.

